2011年9月15日木曜日

分数ができないのは当然 前編

久しぶりのブログです。色々と忙しく、今月はやはり毎日更新はできそうにありません。

5年以上前でしょうか、「分数ができない大学生」とマスコミが話題にしました。今改めて考えてみると、分数ができないなんてのは一般であり、寧ろ分数が出来る人のほうが少ないという風に思います。今回はその話です。

幾つかのレベルがありますが、ひとまずは、分数の計算から。

単純に、1/3÷1/2を計算できますか?というところから始めましょう。2/3が答えですね。ここまではいいとして、では、これがなぜそうなるのか説明できますか?少なくとも私は、義務教育で「なぜ」を教えてもらった覚えはありません。説明できないのではなく、計算できないのがダメなのだ、という人がいますが、計算するならコンピュータに任せればいいのです。分数が計算できる電卓など、1000円も出せば普通に手に入ります。そして、翻って次の疑問が起こります。
「なぜ、大学生が分数ができないことを特異なことのように言うのか」
というところです。マスコミの対象は概ね文系でしたが、文系で上記が説明できる人を聞いたことがありません。そのすべては、分数ができない人であると思います。分数の計算ができないなんていうのは、枝葉末節です。分数に対してそもそも計算法則を理解していないのに分数ができないというのは滑稽千万ですね。
この事例から言いたいのは次のとおりです。
1.そもそも、分数の計算を理解している人が少ないのに、なぜ大学生のみを取り立てていうのか。
2.次に、義務教育ですらこの程度の説明をしていないのはなぜなのか。
3.最後に、計算できることと理解していることは全く別次元であるということ。

ちなみに、分数の割り算が逆数をかければいい理由は、繁分数の計算をすれば瞬時に理解できますが、小学生に説明するならば
「分数というのはカッコつきの割り算と同じ意味だから、1/3÷1/2は(1÷3)÷(1÷2)になる。ここで、2には÷が2回付いている。÷は×の逆だから、×の逆の逆で、×になる。だから2は分子に来て、1は分母に来る。つまり、逆数をかければいい」
とでもやれば、厳密性をそこまで損なわずに話せると思います。

で、話はまだ続きますが、ここからは長くなるので、後編に。

2 件のコメント:

つきみそう さんのコメント...

 小学生の時に分数を習って難しいと思い、中学生になってさんざん苦しめられたので分数を憎み、避けるようになる。それが親になって、「分数難しいからしっかり勉強しなさい」と子供にいう。負の連鎖です。小数の方に親しみを感じる生徒が多いように感じます。有効数字を考慮する必要のあるケースでもなければ、分数で答を書く方が得なんだよ、と言うんですが、一度染みついた」嫌いという感覚を取り去るのは容易なことではないですね。

達哉ん/Tatuyan さんのコメント...

>つきみそう 様
ありがとうございます。
確かに、嫌いっていうイメージは取り去りにくいようですね。数字の場合だと、私は小数のほうが嫌いなのですが、プログラミングでは言うまでもなく分数のほうが面倒ですので、どっちつかずです。
昔の人は無理数を無限連分数に直してまで小数を避けようとしたみたいですが、今は逆になっているのが不思議ですね。